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Some of the data collection details for compound (VIII) were

incorrectly given in Table 1 of Godino Salido et al. (2004). The

data for compound VIII in this paper were collected using

synchrotron radiation at the Daresbury SRS station 9.8, � =

0.6935 Å (Cernik et al., 1997; Clegg, 2000). The data were

collected using a Bruker SMART 1K CCD diffractometer

using ! rotation with narrow frames. The computer program

used in the data collection was SMART (Bruker, 2001) and for

cell refinement and data reduction SAINT (Bruker, 2001).
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Nine hydrated complexes of Group 2 (alkaline earth) cations

with organic ligands which are N-substituted amino acids

containing the 6-amino-3,4-dihydro-3-methyl-5-nitroso-4-

oxopyrimidin-2-yl group have been structurally characterized.

The octahydrated calcium glycinate complex, where the six-

coordinate Ca cation lies on an inversion centre in the space

group P�1, forms a ®nite (zero-dimensional) complex. The

hexahydrated barium glycinate complex contains eight-

coordinate Ba and it is isostructural with the known Sr

analogue, and its one-dimensional coordination polymer takes

the form of a simple chain. The octahydrated calcium and

strontium threonine complexes are isostructural, with eight-

coordinate cations lying on twofold rotation axes in the space

group C2: the one-dimensional coordination polymers take

the form of a chain of spiro-fused rings and a similar chain of

spiro-fused rings is found in the heptahydrated barium serine

complex, although here the ten-coordinate cation lies in a

general position. In the tetrahydrated strontium and barium

glycylglycinate complexes, the eight-coordinate cations lie on

twofold rotation axes in the space group C2/c, but in the Sr

complex the coordination polymer is a chain of spiro-fused

rings, while in the Ba complex the coordination polymer forms

deeply puckered sheets. There are two types of Ca site in the

hexahydrated calcium valine complex: one is eight coordinate

and gives rise to a two-dimensional coordination polymer,

while the other is seven coordinate forming a ®nite, zero-

dimensional coordination complex. In the heptahydrated

barium methionine complex, the coordination polymer is

three dimensional. In all of the complexes, the coordination

aggregates are further linked by an extensive series of

hydrogen bonds.
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1. Introduction

The potassium(I) salt of the substituted glycinate anion LA

[see Scheme (I)] crystallizes as a monohydrate K(LA)�H2O

(Low, Moreno SaÂnchez et al., 2001), and the supramolecular

structure takes the form of an organic±inorganic hybrid sheet

in which metal±oxygen ribbons are linked by strips containing

only organic ligands. The metal±oxygen ribbon contains

vertex-sharing octahedra, while the nitroso group of the anion

acts as an �2 ligand towards K+. The sodium(I) salt of LA, of

the composition [Na2(LA)2(H2O)3], also forms a hybrid

structure, but here the metal±oxygen ribbon contains edge-
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Table 1
Experimental details.

I II III IV V

Crystal data
Chemical formula C14H24Ca-

N10O12�4H2O
C14H26Ba-

N10O13�H2O
C18H28Ca-

N10O12�4H2O
C18H28N10-

O12Sr�4H2O
C16H28Ba-

N10O14�3H2O
Mr 636.58 697.79 688.65 736.19 775.45
Cell setting,

space group
Triclinic, P�1 Monoclinic, P21/c Monoclinic, C2 Monoclinic, C2 Triclinic, P1

a, b, c (AÊ ) 7.4540 (7), 7.6148 (11),
12.5939 (17)

24.9613 (4), 6.91570 (10),
14.6427 (2)

30.2259 (11), 6.4043 (2),
7.3667 (3)

30.6420 (5), 6.4888 (1),
7.3733 (1)

7.1387 (2), 7.4974 (2),
13.5644 (4)

�, �, 
 (�) 95.850 (6), 97.040 (8),
110.038 (8)

90.00, 93.1490 (10),
90.00

90.00, 94.610 (2),
90.00

90.00, 94.4319 (9),
90.00

99.5040 (9), 94.3080 (10),
99.6000 (16)

V (AÊ 3) 658.52 (14) 2523.88 (6) 1421.40 (9) 1461.65 (4) 702.05 (3)
Z 1 4 2 2 1
Dx (Mg mÿ3) 1.605 1.836 1.609 1.673 1.834
Radiation type Mo K� Mo K� Mo K� Mo K� Mo K�
No. of re¯ections

for cell parameters
2833 5709 3182 3314 5818

� range (�) 2.9±27.0 3.0±27.5 3.0±27.4 3.0±27.5 2.9±27.4
� (mmÿ1) 0.33 1.66 0.32 1.94 1.51
Temperature (K) 120 (2) 120 (2) 120 (2) 120 (2) 120 (2)
Crystal form, colour Lath, pink Plate, yellow Plate, pink Block, red Plate, pink
Crystal size (mm) 0.10 � 0.07 � 0.01 0.42 � 0.36 � 0.08 0.24 � 0.24 � 0.04 0.70 � 0.50 � 0.25 0.40 � 0.26 � 0.02

Data collection
Diffractometer Kappa-CCD Kappa-CCD Kappa-CCD Kappa-CCD Kappa-CCD
Data collection

method
� scans, and ! scans

with � offsets
� scans, and ! scans

with � offsets
� scans, and ! scans

with � offsets
� scans, and ! scans

with � offsets
� scans, and ! scans

with � offsets
Absorption correction Multi-scan Multi-scan Multi-scan Multi-scan Multi-scan

Tmin 0.963 0.548 0.867 0.331 0.625
Tmax 0.998 0.881 0.990 0.618 0.970

No. of measured,
independent and
observed re¯ections

5368, 2833, 1311 26 202, 5709, 5255 9010, 3182, 2469 9899, 3314, 3291 10 911, 5818, 5773

Criterion for observed
re¯ections

I > 2�(I) I > 2�(I) I > 2�(I) I > 2�(I) I > 2�(I)

Rint 0.103 0.074 0.073 0.062 0.038
�max (�) 27.0 27.5 27.4 27.5 27.4
Range of h, k, l ÿ9) h) 9 ÿ32) h) 32 ÿ38) h) 38 ÿ39) h) 39 ÿ9) h) 9

ÿ9) k) 9 ÿ8) k) 8 ÿ8) k) 8 ÿ8) k) 8 ÿ9) k) 9
ÿ16) l) 16 ÿ18) l) 18 ÿ9) l) 9 ÿ9) l) 9 ÿ17) l) 17

Re®nement
Re®nement on F2 F2 F2 F2 F2

R[F2 > 2�(F2)],
wR(F2), S

0.057, 0.150, 0.90 0.078, 0.208, 1.19 0.049, 0.096, 1.02 0.028, 0.069, 1.04 0.030, 0.075, 1.01

No. of re¯ections 2833 5739 3182 3314 5818
No. of parameters 188 354 206 209 397
H-atom treatment Constrained to

parent site
Constrained to

parent site
Constrained to

parent site
Constrained to

parent site
Constrained to

parent site
Weighting scheme w = 1/[�2(F2

o)
+ (0.0574P)2],
where P =
(F2

o + 2F2
c )/3

w = 1/[�2(F2
o) + (0.0001P)2

+ 84.2219P], where
P = (F2

o + 2F2
c )/3

w = 1/[�2(F2
o)

+ (0.0339P)2],
where P =
(F2

o + 2F2
c )/3

w = 1/[�2(F2
o) + (0.030P)2

+ 1.5757P], where P =
(F2

o + 2F2
c )/3

w = 1/[�2(F2
o) + (0.0297P)2

+ 0.7753P], where P =
(F2

o + 2F2
c )/3

(�/�)max <0.0001 0.001 <0.0001 <0.0001 <0.0001
��max, ��min (e AÊ ÿ3) 0.39, ÿ0.51 3.61, ÿ4.21 0.30, ÿ0.33 0.33, ÿ0.46 0.44, ÿ0.93
Extinction method None None None SHELXL None
Extinction coef®cient ± ± ± 0.0164 (8) ±
Absolute structure ± ± Flack (1983),

1412 Friedel pairs
Flack (1983),

1486 Friedel pairs
Flack (1983),

2609 Friedel pairs
Flack parameter ± ± ÿ0.08 (5) ÿ0.017 (4) ÿ0.006 (12)

VI VII VIII IX

Crystal data
Chemical formula C18H30N12O14Sr C18H30BaN12O14 C20H36CaN10O12�C20H38Ca

N10O13�3.123H2O
C20H36BaN10O12S2-
�3H2O

Mr 726.16 775.87 1371.37 864.11
Cell setting,

space group
Monoclinic, C2/c Monoclinic, C2/c Monoclinic, P21 Tetragonal, P43

a, b, c (AÊ ) 12.9517 (3), 7.7020 (2),
26.5416 (7)

13.3918 (3), 7.4669 (2),
28.8211 (7)

7.5557 (3), 13.9726 (6),
29.4179 (12)

21.6978 (2), 21.6978 (2),
7.40570 (10)
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shared trigonal bipyramids and the nitroso group of the anion

acts as an �1 ligand towards Na+. The lithium(I) and manga-

nese(II) salts of LA form ®nite complexes, [Li(LA)(H2O)3] and

[Mn(LA)2(H2O)4]�6H2O, which are linked into three-dimen-

sional frameworks by an extensive series of hydrogen bonds,

while the strontium(II) complex [Sr(LA)2(H2O)5]�H2O forms

a one-dimensional coordination polymer (Glidewell et al.,

2002). By contrast, in the magnesium(II) (Arranz MascaroÂ s et

al., 2000) and the zinc(II) (Arranz MascaroÂ s et al., 1999) salts

of LA there is no coordination of LA to the metal centre, and

both have constitutions [M(H2O)6](LA)2�2H2O.

The analogous glycylglycinate anion LB [see Scheme (I)]

forms hydrated complexes with potassium(I) and calcium(II),

[K(LB)(H2O)] (Low, Arranz, Cobo, Fontecha, Godino, LoÂ pez

& Glidewell, 2001) and [Ca(LB)2(H2O)3] (Low, Arranz, Cobo,

Fontecha, Godino, LoÂ pez, Cannon et al., 2001), whose supra-

molecular structures take the form of coordination polymers

in three dimensions and one dimension, respectively, differing

markedly from the supramolecular structures generated using

the simpler ligand LA.

Intrigued by these structural differences, we have now

initiated a study of the supramolecular structures of salts and

complexes formed by a range of Group 2 cations with a range

of ligands analogous to LA and LB, synthesized in many cases

from enantiopure chiral amino acids [see Scheme (I)]. We may

note here that any organic inorganic hybrid materials formed

by chiral analogues of LA or LB must necessarily crystallize in

non-centrosymmetric space groups, so ful®lling one of the

requirements for non-linear optical behaviour (Masse et al.,

1999; Muthuraman et al., 1999).

Table 1 (continued)
VI VII VIII IX

� (�) 97.2770 (12) 103.1310 (10) 91.803 (2) 90.00
V (AÊ 3) 2626.30 (11) 2806.62 (12) 3104.2 (2) 3486.56 (7)
Z 4 4 2 4
Dx (Mg mÿ3) 1.837 1.836 1.467 1.646
Radiation type Mo K� Mo K� Mo K� Mo K�
No. of re¯ections

for cell parameters
2982 3148 14 077 7394

� range (�) 3.1±27.5 3.1±27.4 2.0±29.2 3.0±27.5
� (mmÿ1) 2.15 1.51 0.28 1.34
Temperature (K) 120 (2) 120 (2) 120 (2) 120 (2)
Crystal form, colour Plate, purple Plate, pink Plate, pink Plate, pink
Crystal size (mm) 0.25 � 0.25 � 0.06 0.20 � 0.15 � 0.04 0.05 � 0.04 � 0.03 0.60 � 0.03 � 0.02

Data collection
Diffractometer Kappa-CCD Kappa-CCD Kappa-CCD Kappa-CCD
Data collection method � scans, and ! scans

with � offsets
� scans, and ! scans

with � offsets
� scans, and ! scans

with � offsets
� scans, and ! scans

with � offsets
Absorption correction Multi-scan Multi-scan Multi-scan Multi-scan

Tmin 0.616 0.753 0.967 0.501
Tmax 0.882 0.942 0.992 0.974

No. of measured, independent
and observed re¯ections

16 348, 2982, 2369 7598, 3148, 2905 21 417, 14 077, 13 181 21 371, 7394, 7035

Criterion for
observed re¯ections

I > 2�(I) I > 2�(I) I > 2�(I) I > 2�(I)

Rint 0.073 0.046 0.027 0.072
�max (�) 27.5 27.4 29.2 27.5
Range of h, k, l ÿ12) h) 16 ÿ17) h) 8 ÿ10) h) 7 ÿ28) h) 23

ÿ9) k) 9 ÿ9) k) 8 ÿ18) k) 17 ÿ28) k) 26
ÿ34) l) 34 ÿ37) l) 37 ÿ40) l) 41 ÿ9) l) 7

Re®nement
Re®nement on F2 F2 F2 F2

R[F2 > 2�(F2)], wR(F2), S 0.049, 0.134, 1.04 0.034, 0.085, 1.24 0.037, 0.085, 1.05 0.036, 0.089, 1.05
No. of re¯ections 2982 3148 14 077 7394
No. of parameters 205 205 888 478
H-atom treatment Constrained to

parent site
Constrained to

parent site
Constrained to

parent site
Constrained to

parent site
Weighting scheme w = 1/[�2(F2

o) + (0.0779P)2

+ 5.4996P], where P =
(F2

o + 2F2
c )/3

w = 1/[�2(F2
o)P)2

+ 16.8531P], where P =
(F2

o + 2F2
c )/3

w = 1/[�2(F2
o) + (0.0407P)2

+ 0.4491P], where P =
(F2

o + 2F2
c )/3

w = 1/[�2(F2
o) + (0.0289P)2

+ 4.0203P], where P =
(F2

o + 2F2
c )/3

(�/�)max <0.0001 0.001 0.003 0.001
��max, ��min (e AÊ ÿ3) 1.43, ÿ0.74 0.99, ÿ0.84 0.40, ÿ0.39 0.74, ÿ0.71
Extinction method None None None None
Absolute structure ± ± Flack (1983), 5320 Friedel pairs Flack (1983), 3077 Friedel pairs
Flack parameter 0.085 (17) ÿ0.022 (13)

Computer programs used: Kappa-CCD server software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997b), SHELXL97 (Sheldrick, 1997a);
PLATON (Spek, 2003); PRPKAPPA (Ferguson, 1999).
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This paper reports on the molecular and supramolecular

structures of the following nine hydrated complexes: the Ca

and Ba complexes of the ligand LA, compounds (1) and (2),

respectively, the latter of which proves to be isostructural with

the Sr analogue reported earlier (Glidewell et al., 2002); the

Ca and Sr complexes of the ligand LC, compounds (3) and (4),

respectively; the Ba complex of LD, compound (5); the Sr and

Ba complexes of LB, compounds (6) and (7), respectively; the

Ca complex of LE, compound (8); and the Ba complex of

ligand LF, compound (9). The overall compositions of these

complexes are as follows: (1) [Ca(LA)2�8H2O]; (2)

[Ba(LA)2�6H2O]; (3) and (4), [M(LC)2�6H2O] (M = Ca, Sr);

(5), [Ba(LD)2�7H2O]; (6) and (7), [M(LB)2�4H2O] (M = Sr,

Ba); (8), [Ca(LE)2�6H2O]; and (9) [Ba(LF)2�7H2O].

2. Experimental

2.1. Synthesis

Neutral (N-pyrimidyl)amino acids corresponding to the

anionic ligands LA±LF [see Scheme (I)] were prepared using

the methods described previously (Low et al., 2000).

Compound (1): Equimolar quantities (0.5 mmol) of calcium

chloride dihydrate and tetramethylammonium N-(6-amino-

3,4-dihydro-3-methyl-5-nitroso-4-oxopyrimidin-2-yl)glycinate

were separately dissolved in water. The solutions were mixed

and the resulting pink precipitate was ®ltered off. Slow

evaporation of the ®ltrate gave pink crystals of (1), which were

collected by ®ltration. Analysis: found C 26.5, H 5.2, N 21.8%;

C14H32CaN10O16 requires C 26.4, H 5.1, N 22.0%.

Compound (2): Equimolar quantities (0.5 mmol) of barium

chloride dihydrate and tetramethylammonium N-(6-amino-

3,4-dihydro-3-methyl-5-nitroso-4-oxopyrimidin-2-yl)glycinate

were separately dissolved in water. The solutions were mixed

and the mixture was allowed to crystallize at room tempera-

ture, providing pink crystals of (2), which were collected by

®ltration and washed with ethanol. Analysis: found C 24.1, H

4.2, N 20.0%; C14H28BaN10O14 requires C 24.1, H 4.1, N

20.3%.

Compound (3): Calcium chloride dihydrate (0.5 mmol) was

added to a solution of N-(6-amino-3,4-dihydro-3-methyl-5-

nitroso-4-oxopyrimidin-2-yl)threonine (0.5 mmol) in water

(40 cm3). Slow evaporation of the mixture yielded pink crys-

tals of (3), which were collected by ®ltration and washed with

ethanol. Analysis: found C 31.4, H 5.4, N 20.3%;

C18H36CaN10O16 requires: C 31.4, H 5.3, N 20.3%.

Compound (4): Strontium chloride hexahydrate (0.5 mmol)

was added to a solution of N-(6-amino-3,4-dihydro-3-methyl-

5-nitroso-4-oxopyrimidin-2-yl)threonine (0.5 mmol) in water

(40 cm3). Slow evaporation of the mixture yielded pink crys-

tals of (4), which were collected by ®ltration and washed with

ethanol. Analysis: found C 29.3, H 5.2, N 18.9%;

C18H36N10O16Sr requires: C 29.4, H 4.9, N 19.0%.

Compound (5): Equimolar quantities (0.5 mmol) of KOH

and N-(6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxopyr-

imidin-2-yl)serine were dissolved in water (10 cm3), and a

solution of barium chloride dihydrate (0.50 mmol) dissolved in

water (20 cm3) was added. The resulting precipitate was

®ltered off and the ®ltrate was then allowed to evaporate.

After 2 d, pink tabular crystals of (5) were collected by

®ltration and washed with ethanol. Analysis: found: C 25.8, H

4.7, N 18.8%; C16H34BaN10O17 requires: C 24.8, H 4.4, N

18.1%.

Compound (6): To a hot solution (60 cm3) of tetra-

methylammonium chloride in water (0.25 mol dmÿ3) was

added strontium hydroxide (0.35 mmol) followed by N-(6-

amino-3,4-dihydro-3-methyl-5-nitroso-4-oxopyrimidin-2-yl)-

glycylglycine (0.35 mmol). Slow evaporation of the pink

solution obtained yielded, after 5 d at room temperature,

purple crystals of (6), which were collected by ®ltration and

then washed with cold water and ethanol. Analysis: found C

29.3, H 4.0, N 22.3%; C18H30N12O14Sr requires C 29.8, H 4.2, N

23.2%.

Compound (7): Equimolar quantities (0.35 mmol) of

barium hydroxide and N-(6-amino-3,4-dihydro-3-methyl-5-

nitroso-4-oxopyrimidin-2-yl)glycylglycine were separately

dissolved in water. When the solutions were mixed an orange

precipitate was produced and ®ltered off. The resulting pink

solution was then slowly evaporated at room temperature
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giving, after 5 d, pink crystals of (7), which were collected by

®ltration and then washed with ethanol and ether. Analysis:

found C 28.6, H 4.1, N 22.1%; C18H30BaN12O14 requires C

27.8, H 3.9, N 21.7%.

Compound (8): N-(6-Amino-3,4-dihydro-3-methyl-5-

nitroso-4-oxopyrimidin-2-yl)valine (0.5 mmol) was mixed with

5 cm3 of an aqueous solution of tetramethylammonium

hydroxide (0.1 mol dmÿ3) and this was then added to a solu-

tion of calcium chloride dihydrate (0.5 mmol) in water

(20 cm3). The resulting solution was reduced in volume and

after several days gave a mixture of pink and colourless

crystals: these were collected by ®ltration, washed with

ethanol and then separated manually to provide pink tabular

crystals of (8). Analysis: found C 35.1, H 6.2, N 20.2%;

C20H40CaN10O14 requires: C 35.1, H 5.9, N 20.5%.

Compound (9): Equimolar quantities (0.5 mmol) of N-(6-

amino-3,4-dihydro-3-methyl-5-nitroso-4-oxopyrimidin-2-yl)-

methionine and KOH were dissolved in water (10 cm3) and a

solution of barium chloride dihydrate (0.50 mmol) dissolved in

water (20 cm3) was added. Slow evaporation of the resultant

solution yielded pink crystals of (9), which were collected by

®ltration and washed with ethanol. Analysis: found C 28.9, H

4.9, N 16.3, S 7.2%; C20H42BaN10O17S2 requires: C 27.8, H 4.9,

N 16.2, S 7.4%.

Crystals suitable for single-crystal X-ray diffraction were in

every case selected directly from the samples as prepared.

2.2. Data collection, structure solution and refinement

Details of cell data, data collection and structure solution

and re®nement are summarized in Table 1. Compound (1) is

triclinic: the space group P�1 was chosen and con®rmed by the

analysis. For (2) the space group P21/c was uniquely assigned

Figure 1
The independent components of (1) showing the octahedral coordination
of the Ca and the atom-labelling scheme. Displacement ellipsoids are
drawn at the 30% probability level. The atoms marked `a' are at the
symmetry position (1ÿ x; 1ÿ y; 1ÿ z) and the Ca1 atom has 0.5
occupancy.

Figure 2
The independent components of (2) showing the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level.

Figure 3
The independent components of (3) showing the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level and the
Ca1 atom has 0.5 occupancy.



from the systematic absences. For the isostructural compounds

(3) and (4) the systematic absences permitted the space groups

C2, Cm and C2/m, and for (8) the systematic absences

permitted the space groups P21 and P21/m; in view of the

chiral nature of the ligands, the space groups C2 and P21 were

selected and con®rmed by the successful structure solution

and re®nement. Compound (5) is triclinic and the space group

P1 was chosen on the basis of the ligand chirality and
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Table 2
Metal±oxygen distances (AÊ ).

(1)²
Ca1ÐO121 2.263 (3) Ca1ÐO1 2.363 (3)

Ca1ÐO2 2.379 (3)

(2)
Ba1ÐO121 2.656 (8) Ba1ÐO1 2.752 (8)
Ba1ÐO221 2.765 (7) Ba1ÐO2 2.762 (7)
Ba1ÐO25i 2.837 (7) Ba1ÐO3 2.866 (8)

Ba1ÐO4 2.802 (8)
Ba1ÐO5 2.771 (8)

(3)³
Ca1ÐO21 2.473 (2) Ca1ÐO1 2.395 (2)
Ca1ÐO22ii 2.437 (2)
Ca1ÐO23ii 2.605 (2)

(4)³
Sr1ÐO21 2.611 (2) Sr1ÐO1 2.535 (2)
Sr1ÐO22ii 2.591 (2)
Sr1ÐO23ii 2.704 (2)

(5)
Ba1ÐO11 2.912 (3) Ba1ÐO1 2.773 (3)
Ba1ÐO12 2.859 (3) Ba1ÐO2 2.695 (3)
Ba1ÐO13iii 2.787 (3) Ba1ÐO3 2.903 (3)
Ba1ÐO21 2.765 (3) Ba1ÐO4 2.980 (3)
Ba1ÐO23iii 2.815 (3) Ba1ÐO5 3.238 (4)

(6)³
Sr1ÐO21 2.547 (2) Sr1ÐO1 2.598 (3)
Sr1ÐO23ii 2.618 (2) Sr1ÐO2 2.502 (3)

(7)³
Ba1ÐO21 2.762 (2) Ba1ÐO1 2.767 (3)
Ba1ÐO23iv 2.816 (2) Ba1ÐO2 2.808 (3)

(8)
Ca1ÐO121 2.403 (2) Ca1ÐO1 2.363 (2)
Ca1ÐO221 2.403 (2) Ca1ÐO2 2.512 (2)
Ca1ÐO15v 2.510 (2) Ca1ÐO3 2.399 (2)
Ca1ÐO25vi 2.685 (2) Ca1ÐO4 2.455 (2)
Ca2ÐO321 2.385 (2) Ca2ÐO5 2.369 (2)
Ca2ÐO421 2.345 (2) Ca2ÐO6 2.430 (2)

Ca2ÐO7 2.441 (2)
Ca2ÐO8 2.369 (2)
Ca2ÐO9 2.522 (2)

(9)
Ba1ÐO11 2.756 (3) Ba1ÐO1 2.829 (3)
Ba1ÐO21 2.747 (3) Ba1ÐO2 2.909 (3)
Ba1ÐO25vii 3.299 (3) Ba1ÐO3 2.894 (3)

Ba1ÐO4 2.888 (3)
Ba1ÐO1viii 2.826 (3)
Ba1ÐO2viii 2.815 (3)
Ba1ÐO3viii 2.915 (3)

Symmetry codes: (i) 1ÿ x; 1
2� y; 1

2ÿ z; (ii) x;ÿ1� y; z; (iii) 1� x; y; z; (iv)
1
2� x; 1

2� y; z; (v) ÿx;ÿ 1
2� y; 1 ÿ z; (vi) 1ÿ x; 1

2� y; 1ÿ z; (vii) y; 1ÿ x; 1
4� z; (viii)

2ÿ x; 1ÿ y; 1
2� z. ² M lies at a centre of inversion. ³ M lies on a twofold rotation

axis.

Figure 4
The independent components of (4) showing the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level and the
Sr1 atom has 0.5 occupancy.

Figure 5
The independent components of (5) showing the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level.

Figure 6
The independent components of (6) showing the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level and the
Sr1 atom has 0.5 occupancy.
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con®rmed by the successful structure solution and re®nement.

For (6) and (7) the systematic absences permitted the space

groups Cc and C2/c. In each case the space group C2/c was

selected and con®rmed by the successful structure solution

and re®nement. For (9) the systematic absences permitted the

unique assignment of one member of the enantiomorphous

pair of space groups P41 and P43. The space group P43 was

selected by reference to the known con®guration of the

enantiopure amino acid component and con®rmed by the

value of the Flack parameter (Flack, 1983), ÿ0.022 (13) for

3077 Friedel pairs. For (3), (4), (5) and (8) the absolute

con®gurations were set by reference to the known amino acid

con®gurations and con®rmed by the values of the Flack

parameters, ÿ0.08 (5), ÿ0.017 (4), ÿ0.006 (12) and 0.085 (17)

for 1412, 1486, 2609 and 45 320 Friedel pairs, respectively.

The structures were all solved by direct methods using

SHELXS97 (Sheldrick, 1997a) and re®ned on F2 with all data

using SHELXL97 (Sheldrick, 1997b). A weighting scheme

based upon P = [F2
o + 2F2

c ]/3 was employed in order to reduce

statistical bias (Wilson, 1976). All H atoms were located from

difference maps and all were included in the re®nements as

riding atoms. In (8) two of the four independent isopropyl

fragments in the side chains, those pendent from C121 and

C321, were found to be disordered: in each case the disorder

was modelled using two sets of sites: for the fragments

connected to C121 the re®ned values of the site-occupancy

factors were 0.722 (7) and 0.278 (7), while for those bonded to

C321 they were 0.880 (6) and 0.120 (6), respectively. It is

probable that the occupancy of these disordered fragments is

correlated to some extent, in order to avoid the occurrence of

unacceptably short non-bonded contacts between C atoms in

the two side chains. Compound (8) also contains a partially

occupied water site O1S, with occupancy 0.123 (8), but no H

atoms associated with this site could be located. In (9) the

terminal ÐCH2SCH3 unit of the type 1 ligand (containing N11

etc.) was found to be very heavily disordered. This fragment

was modelled using three sets of sites; isotropic re®nement led

to site-occupancy factors of 0.390, 0.270 and 0.340, which were

thereafter ®xed at these values during the ®nal anisotropic

re®nement.

Supramolecular analyses were made and the diagrams were

prepared with the aid of PLATON (Spek, 2003). Figs. 1±30

show the independent components of (1)±(9) with the atom-

labelling schemes and aspects of their supramolecular struc-

tures. Selected molecular dimensions are given in Tables 2 and

3, and details of the hydrogen bonding are in Table 4.1

3. Results and discussion

3.1. Constitutions and metal coordination

The calcium salt (1) of the substituted glycinate anion LA

has the same gross composition [M(LA)2�8H2O] as the Mg and

Zn analogues (Arranz MascaroÂ s et al., 1999, 2000), but it

differs from these latter two derivatives in that the two anions

are coordinated directly to the Ca ion via their carboxylate

groups in monodentate fashion, with the centrosymmetric

octahedral coordination around Ca being completed by four

water molecules (Fig. 1). Hence the overall constitution of (1)

is [M(LA)2�(H2O)4]�4H2O, as opposed to [M(H2O)6]-

Figure 7
The independent components of (7) showing the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level and the
Ba1 atom has 0.5 occupancy.

Figure 8
The independent components of (8) showing the atom-labelling scheme:
(a) Ca1 and its ligands; (b) Ca2 and its ligands, together in each case with
the hydrogen-bonded water molecules. The partially occupied water O1S
has been omitted. Displacement ellipsoids are drawn at the 30%
probability level.

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: NA5011). Services for accessing these data are described
at the back of the journal.



(LA)2�2H2O for the Mg and Zn analogues. The Ba complex (2)

of the ligand LA, [Ba(LA)2�6H2O] (Fig. 2), is isostructural with

the Sr analogue (Glidewell et al., 2002). The Ba cation is eight-

coordinate, taking the form of a distorted square antiprism in

which ®ve of the six water molecules are directly linked to the

metal, while the coordination is completed by two carboxyl

groups, both monodentate, and one nitrosyl O atom: the two

independent anions thus differ in their coordination beha-

viour. The structures reported here for (1) and (2) bring to six

the number of hydrated MII complexes of the ligand LA which

have now been structurally characterized, and four of these

contain the Group 2 metals Mg, Ca, Sr and Ba, the ®rst two of

which crystallize as octahydrates and the last two as hexahy-

drates. While both the Mg and Ca complexes contain six-

coordinate metals, only the larger Ca has the anionic ligands

coordinated, whereas the complexes of the large cations Sr

and Ba contain eight-coordinate metals.

In the two isomorphous hexahydrates (3) and (4) (Figs. 3

and 4), the Ca and Sr cations lie on twofold rotation axes in the

space group C2 and are eight-coordinate, as opposed to the

six-coordination of Ca in (1). The coordination polyhedron is

made up of two carboxylate groups each binding to the cation

in bidentate fashion, two hydroxyl O from the threonine side

chains and two water molecules (Table 2): the four remaining

water molecules are linked to coordinated O via OÐH� � �O
hydrogen bonds (Table 4). In the heptahydrate (5) (Fig. 5), all

components lie in general positions and the barium cation is

ten-coordinate. This ten-coordination is made up of ®ve water

molecules, one of which (containing O5) is rather weakly

bound although also linked into the asymmetric unit via a
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Table 3
Selected bond lengths for (1)±(9) (AÊ ).

a b c d e f g h j k l �

(1)
1.321 (5) 1.377 (4) 1.386 (5) 1.451 (5) 1.430 (5) 1.336 (5) 1.331 (5) 1.323 (5) 1.335 (5) 1.296 (4) 1.227 (4) 0.039

(2)²
1.346 (12) 1.363 (13) 1.402 (13) 1.446 (15) 1.440 (13) 1.350 (12) 1.321 (12) 1.320 (13) 1.334 (12) 1.285 (12) 1.227 (13) 0.049
1.308 (12) 1.414 (11) 1.390 (12) 1.451 (13) 1.457 (12) 1.325 (13) 1.329 (12) 1.323 (13) 1.323 (12) 1.293 (11) 1.240 (11) 0.030

(3)
1.323 (3) 1.380 (3) 1.395 (3) 1.458 (3) 1.440 (3) 1.344 (3) 1.341 (3) 1.320 (3) 1.343 (3) 1.298 (3) 1.221 (3) 0.045

(4)
1.323 (3) 1.379 (3) 1.405 (3) 1.454 (3) 1.451 (3) 1.343 (3) 1.342 (2) 1.308 (3) 1.343 (3) 1.289 (3) 1.220 (3) 0.054

(5)³
1.330 (7) 1.384 (5) 1.382 (6) 1.456 (6) 1.447 (6) 1.344 (8) 1.318 (7) 1.317 (7) 1.343 (7) 1.293 (6) 1.225 (6) 0.050
1.327 (5) 1.381 (5) 1.394 (9) 1.468 (8) 1.443 (6) 1.346 (6) 1.328 (6) 1.318 (6) 1.334 (8) 1.291 (7) 1.225 (8) 0.041

(6)
1.337 (4) 1.377 (4) 1.395 (4) 1.464 (5) 1.439 (5) 1.338 (4) 1.326 (4) 1.326 (4) 1.342 (4) 1.291 (4) 1.228 (4) 0.051

(7)
1.333 (4) 1.386 (4) 1.393 (4) 1.451 (5) 1.444 (5) 1.334 (5) 1.331 (4) 1.321 (4) 1.346 (5) 1.289 (4) 1.230 (4) 0.057

(8)§
1.333 (2) 1.388 (2) 1.393 (3) 1.460 (3) 1.446 (3) 1.340 (3) 1.330 (3) 1.326 (3) 1.351 (3) 1.280 (2) 1.241 (3) 0.071
1.325 (3) 1.385 (2) 1.408 (3) 1.449 (3) 1.455 (3) 1.344 (3) 1.340 (3) 1.321 (3) 1.347 (3) 1.278 (3) 1.235 (3) 0.069
1.332 (3) 1.391 (3) 1.395 (3) 1.453 (3) 1.452 (3) 1.341 (3) 1.333 (3) 1.321 (3) 1.344 (3) 1.291 (2) 1.234 (3) 0.053
1.326 (3) 1.392 (3) 1.406 (3) 1.455 (3) 1.447 (3) 1.347 (3) 1.341 (3) 1.324 (3) 1.347 (3) 1.281 (3) 1.225 (3) 0.066

(9)}
1.330 (6) 1.381 (5) 1.399 (5) 1.455 (6) 1.426 (6) 1.354 (5) 1.334 (5) 1.308 (6) 1.349 (5) 1.285 (5) 1.225 (6) 0.064
1.330 (5) 1.380 (5) 1.397 (5) 1.441 (6) 1.435 (6) 1.340 (5) 1.328 (5) 1.316 (6) 1.354 (5) 1.268 (5) 1.237 (5) 0.086

� = (j ÿ k). ² Two independent anionic ligands, see Fig. 2. ³ Two independent anionic ligands, see Fig. 5. § Four independent anionic ligands, see Fig. 8. } Two independent
anionic ligands, see Fig. 9.
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hydrogen bond, together with ®ve coordinating O from the

anionic ligands: one monodentate carboxylate, one bidentate

carboxylate and the two unionized hydroxyl groups in the

serine side chain. Two further water molecules are linked to

the rest of the structure via OÐH� � �O hydrogen bonds.

The Sr and Ba derivatives of the glycylglycinate anion LB,

(6) and (7), respectively, both crystallize as tetrahydrates (Figs.

6 and 7): by contrast, the Ca analogue crystallizes as a trihy-

Figure 9
The independent components of (9) showing the atom-labelling scheme:
(a) for the sake of clarity showing only one component of the disordered
anion and (b) the disordered anion only, showing all of the components
(see text). Displacement ellipsoids are drawn at the 30% probability
level.

Figure 10
Part of the crystal structure of (3) showing the formation of a one-
dimensional coordination polymer along [010]. For the sake of clarity, the
water molecules, the H atoms bonded to C atoms and the unit-cell box are
all omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar
sign ($) are at the symmetry positions (2ÿ x; y; 1ÿ z), (x;ÿ1� y; z) and
(2ÿ x;ÿ1� y; 1ÿ z), respectively, and atom Ca1& is at the position (1,
1 + y, 1

2).

Figure 11
Part of the crystal structure of (5) showing the formation of a one-
dimensional coordination polymer along [100]. For the sake of clarity, the
water molecules and the H atoms bonded to C and O atoms are omitted.
The atoms marked with an asterisk (*) or a hash (#) are at the symmetry
positions (1� x; y; z) and (ÿ1� x; y; z), respectively.



drate (Low, Arranz, Cobo, Fontecha, Godino, LoÂ pez et al.,

2001). In each of (6) and (7) the cations lie on twofold rotation

axes in the space group C2/c, and in each the cation is eight-

coordinate: the coordination polyhedron in each case consists

of two monodentate carboxylate units, two amidic O atoms

and four water molecules. The tetrahydrate Sr salt is, in fact,

almost isomorphous with the trihydrated Ca salt: in this

trihydrate, each of the three water molecules is coordinated to

Ca, but each is disordered over two sites related by the

twofold rotation axis and thus having equal occupancy.

Because of the fully correlated site occupancies at each indi-
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Table 4
Selected intermolecular hydrogen bonds (AÊ , �).

DÐH� � �A H� � �A D� � �A DÐH� � �A
(1)
N6ÐH6A� � �O4i 2.01 2.818 (4) 152
O1ÐH1Y� � �O5ii 1.75 2.688 (4) 172
O2ÐH2Y� � �O3 1.70 2.635 (4) 176
O3ÐH3Y� � �O1iii 2.07 2.914 (4) 149
O4WÐH4X� � �O4iv 2.06 2.880 (4) 145
O4WÐH4X� � �N5iv 2.43 3.220 (5) 141

(3)
N6ÐH6A� � �O4v 1.91 2.781 (3) 168
O21ÐH21A� � �O2 2.04 2.846 (3) 167
O2ÐH21B� � �O5vi 1.88 2.711 (3) 175

(4)
N6ÐH6A� � �O4v 1.92 2.790 (2) 169
O21ÐH21A� � �O2 2.01 2.812 (2) 164
O2ÐH21B� � �O5vi 1.85 2.699 (2) 173

(5)
N16ÐH16A� � �O14iii 2.00 2.845 (7) 161
N26ÐH26A� � �O24vii 2.04 2.873 (6) 158
O1ÐH1A� � �O11i 1.99 2.809 (4) 158
O1ÐH1B� � �O22viii 1.91 2.750 (5) 164
O4ÐH4B� � �N15ix 2.16 3.012 (6) 159
O4ÐH4B� � �O14ix 2.47 3.134 (4) 131
O6ÐH6B� � �O24x 2.32 3.160 (6) 147
O6ÐH6B� � �N25x 2.28 3.083 (8) 142

(6)
N6ÐH6A� � �O4xi 2.03 2.841 (4) 153
N21ÐH21� � �O23xii 2.13 2.928 (4) 151
N22ÐH22� � �N5xiii 2.26 3.041 (4) 148

(7)
N22ÐH22� � �N5xiv 2.27 3.077 (4) 152

(8)
N16ÐH16A� � �O14i 2.13 2.997 (2) 170
N26ÐH26A� � �O24xv 2.20 3.073 (2) 175
N36ÐH36A� � �O34xv 2.03 2.830 (2) 150
N46ÐH46A� � �O44i 2.04 2.871 (2) 158
O1ÐH1A� � �O422xv 2.03 2.811 (2) 154
O7ÐH7A� � �O45xvi 1.93 2.723 (2) 155
O7ÐH7B� � �O35xvii 2.02 2.815 (2) 155

(9)
N16ÐH16A� � �O14v 2.07 2.890 (5) 155
N26ÐH26A� � �O24v 2.07 2.875 (5) 152

Symmetry codes: (i) 1� x; y; z; (ii) x;ÿ1� y;ÿ1� z; (iii) x; 1� y; z; (iv)
1� x; y;ÿ1� z; (v) x; y; 1� z; (vi) 3

2ÿ x;ÿ 1
2� y;ÿz; (vii) x;ÿ1� y; z; (viii)

1� x; 1� y; z; (ix) 1� x; 1� y; 1� z; (x) ÿ1� x;ÿ1� y;ÿ1� z; (xi)
ÿ 1

2� x;ÿ 1
2� y; z; (xii) 1

2� x;ÿ 1
2� y; z; (xiii) 3

2ÿ x; 5
2ÿ y;ÿz; (xiv) 1

2ÿ x; 1
2ÿ y;ÿz;

(xv) ÿ1� x; y; z; (xvi) 2ÿ x; 1
2� y; 2ÿ z; (xvii) 2ÿ x;ÿ 1

2� y; 2ÿ z.

Figure 12
Part of the crystal structure of (6) showing the formation of a one-
dimensional coordination polymer along [010]. For the sake of clarity, the
water molecules and the H atoms bonded to C atoms are omitted. The
atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the
symmetry positions (1ÿ x; y; 1

2ÿ z), (x;ÿ1� y; z) and
(1ÿ x;ÿ1� y; 1

2ÿ z), respectively, and the Sr1& atom is at the position
(1

2 ; 1� y; 0:25).

Figure 13
Stereoview of part of the crystal structure of (7) showing the formation of
a two-dimensional coordination polymer as a deeply puckered (001)
sheet. For the sake of clarity, the water molecules and the H atoms
bonded to C atoms are omitted.

Figure 14
Stereoview of part of the crystal structure of (8) showing the formation of
a (001) sheet of R4

8�44� rings, built from the type 1 cation and two anions
only. For the sake of clarity, H atoms bonded to C atoms are omitted and
only the major components of the disordered fragments are shown.
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vidual Ca ion, these ions are thus seven-coordinate with a

geometry best described as distorted pentagonal bipyramidal.

Compound (8) crystallizes as a hexahydrate, but its consti-

tution differs from those of all the other complexes in this

series in that there are two distinct Ca cations, both lying in

general positions, having entirely different coordination

characteristics (Fig. 8). The ®rst cation type, denoted Ca1, has

eight coordination comprising two carboxylate groups from

two different ligands, each bonded in monodentate mode, two

nitroso O atoms from a further pair of anionic ligands, and

four water molecules. The second cation type, denoted Ca2,

has seven coordination, comprising two monodentate

carboxylate groups, from a third pair of ligands, and ®ve water

molecules. There are in addition three more water molecules

which are not directly coordinated to either of the cations.

Hence, the appropriate formulation for the constitution of (8)

is [Ca(LE)2�(H2O)4]�[Ca(LE)2�(H2O)5]�3H2O. As discussed

below (x3.3.3) the coordination polymers based on Ca1 and

Ca2 are entirely different: Ca1 gives rise to a two-dimensional

coordination polymer, while Ca2 forms a ®nite, zero-dimen-

sional coordination complex.

The overall composition of the barium complex (9) (Fig. 9)

is similar to that of complex (5), namely a heptahydrate. Again

the Ba cation is ten-coordinate, but the composition of the

coordination shell is different from that in (5). In (9) each

cation is coordinated by seven water molecules, of which six

are shared in two sets of three with two other cations; in

addition, there are two monodentate carboxylate groups,

compared with the one monodentate and one bidentate

carboxylate in (5), and one nitroso O atom: nitroso coordi-

nation is absent from (5). The coordination characteristics of

the two anions in (9) are therefore different as only one anion

bridges pairs of cations. There are also three further water

molecules linked to the rest of the structure by OÐH� � �O
hydrogen bonds.

Compounds (1), (3) and (8) provide examples of

calcium(II) adopting six-, seven- and eight-coordination. For

Ca2+ cations with these coordination numbers, Shannon &

Prewitt (1970) have proposed ionic radii of 1.00, 1.07 and

1.12 AÊ , respectively. While the mean values of the CaÐO

distances listed in Table 2 certainly increase with increasing

coordination numbers, the mean distances involving the O

atoms in the anions show a sharper rate of increase with

coordination number, while the mean distances involving

water molecules show a lesser increase than these radii would

suggest. Compound (2) contains eight-coordinate Ba2+, while

compounds (5) and (9) both contain ten-coordinate Ba2+: for

such cations, Shannon and Prewitt's radii are 1.42 and 1.52 AÊ ,

respectively. Consistent with this, the mean value of the BaÐ

O distances in (2) is 2.777 AÊ , while the corresponding values

for (5) and (9) are 2.873 and 2.888 AÊ , respectively.

Figure 15
Stereoview of part of the crystal structure of (9) showing the formation of
a 43 helical chain along (1

2,
1
2, z) built from cations and type 2 anions only.

For the sake of clarity H atoms bonded to C atoms are omitted and only
the major components of the disordered fragments are shown.

Figure 16
Part of the crystal structure of (9) showing the formation of a 21 helical
chain along (1, 1

2, z) built from only cations and water molecules. The
atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an
ampersand (&) are at the symmetry positions (2ÿ x; 1ÿ y;ÿ 1

2� z),
(x; y;ÿ1� z), (2ÿ x; 1ÿ y; 1

2� z) and (x; y; 1� z), respectively.

Figure 17
Part of the crystal structure of (1) showing the formation of a hydrogen-
bonded molecular ladder along [100] formed by cations and anions alone.
For the sake of clarity, the water molecules and the H atoms bonded to C
atoms are omitted. The O and N atoms marked with an asterisk (*), a
hash (#) or a dollar sign ($) are at the symmetry positions
(1ÿ x; 1ÿ y; 1ÿ z), (1� x; y; z) and (ÿ1� x; y; z), respectively, and
atoms Ca1*, Ca1# and Ca1$ are at the positions (1

2,
1
2,

1
2), (3

2,
1
2,

1
2) and (ÿ1

2,
1
2,

1
2), respectively.



3.2. Ligand dimensions and conformations

The pyrimidinone rings in (1)±(9) are all essentially planar

and both the amino and the nitrosyl substituents are coplanar

with the ring: only the N-substituent side chains deviate from

this plane. The coplanarity of the amino groups with the

pyrimidinone ring permits electronic delocalization between

the various N atoms, but effectively precludes these atoms

from acting as hydrogen-bond acceptors. In each compound

the nitrosyl group is oriented trans to C4, so that its oxygen O5

is ideally placed for the formation of an intramolecular NÐ

H� � �O hydrogen bond in an S(6) motif (Bernstein et al., 1995).

Several of the bond lengths in (1)±(9) have unusual values.

First, in the C-nitroso group the CÐN and NÐO bond

distances are similar (Table 3): in simple neutral compounds

where there is no possibility of signi®cant electronic deloca-

lization these distances normally differ by at least 0.20 AÊ

(Talberg, 1977; Schlemper et al., 1986) and the NO distance

rarely exceeds 1.25 AÊ (Davis et al., 1965; Bauer & Andreassen,

1972; Talberg, 1977; Schlemper et al., 1986). On the other

hand, the CÐN and NÐO distances in (1)±(9) are typical of

those observed in oximate anions [RR0C NÐO]ÿ (Raston et

al., 1978; Domasevitch, Gerasimchuk et al., 1996; Domase-

vitch, Mokhir et al., 1996; Domasevitch et al., 1997, 1998).

Secondly, the C5ÐC6 bond length in each of (1)±(9) is more

typical of a single bond between two three-connected C atoms

[mean value 1.460 AÊ (Allen et al., 1987)] than of a double

bond between two such atoms [mean value for C-substituted

bonds 1.331 AÊ ; typical values in N heterocycles lie in the range

1.36±1.38 AÊ ]. Thirdly, the CÐN bonds denoted a, f, g and h in

Table 3 are all rather similar in length, such that it is not

possible to distinguish between single and double bonds here.

These geometric parameters taken together indicate that the

conventional representation A is a less appropriate repre-

sentation of the molecular and electronic structure in this

series than the alternative, charge-separated form B.

3.3. Coordination polymers

3.3.1. A zero-dimensional coordination polymer, (1). As

noted above (x3.1) the calcium cation in (1) is coordinated

only by two monodentate anions and by four water molecules

(Fig. 1). Thus, no coordination polymer is formed here, and the

supramolecular aggregation depends solely on hydrogen

bonding.
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Figure 18
Part of the crystal structure of (1), showing the formation of a chain of
spiro-fused rings along [010] built from cations and water molecules only.
The O atoms marked with an asterisk (*), a hash (#) or a dollar sign ($)
are at the symmetry positions (1ÿ x; 1ÿ y; 1ÿ z), (x; 1� y; z) and
(x;ÿ1� y; z), respectively, and atoms Ca1*, Ca1# and Ca1$ are at the
positions (1

2,
1
2,

1
2), (1

2,
3
2,

1
2) and (1

2, ÿ1
2,

1
2), respectively.

Figure 19
Stereoview of part of the crystal structure of (1) showing the formation of
a chain of spiro-fused rings along [110]. For the sake of clarity, the water
molecules not involved in the motif shown and H atoms bonded to C
atoms are omitted.
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3.3.2. One-dimensional coordination polymers. Compound

(2): This compound is isostructural with the strontium

analogue (Glidewell et al., 2002): the anions of type 2 bridge

adjacent pairs of cations, producing a one-dimensional coor-

dination polymer in the form of a simple chain generated by a

21 screw axis in the space group P21/c, while the type 1 anions

are pendent from this chain.

Compounds (3) and (4): These compounds are isostructural,

and hence only (3) will be discussed in any detail. In (3) the

calcium cation lies on a twofold rotation axis in the space

group C2, chosen as that along (1, y, 1
2), and the anion acts as a

bridging ligand between pairs of calcium ions. The reference

Ca centre is ligated by the hydroxyl O21 atoms of the anions at

(x; y; z) and �2ÿ x; y; 1ÿ z), while the carboxyl groups in the

two anions coordinate in bidentate fashion to the Ca at (1, 1 +

y, 1
2). In this way a coordination polymer is generated in the

form of a chain of spiro-fused rings, running parallel to the

[010] direction (Fig. 10). In both (3) and (4) the metal coor-

dination is completed by a pair of symmetry-related water

molecules, containing O1 (Figs. 3 and 4), and in both

compounds the MÐO distances (Table 2) follow the same

order: MÐO1 < MÐO22 < MÐO21 < MÐO23, although the

difference between the two MÐO distances involving the

bidentate carboxylate group is signi®cantly less for M = Sr

than for Ca.

Compound (5): While the coordination polymer formed by

(5) (Fig. 5) is one-dimensional, as in (3) and (4), with each

anionic ligand bridging a pair of metal cations, there are two

independent anions in (5) whose ligating properties are

different. There is thus no internal symmetry in the polymer

chain. While in the type 1 anionic ligand, containing atoms

O11, O12 and O13, the carboxylate unit acts as a bidentate

ligand, in the type 2 anion (containing atoms O21, O22 and

O23) the carboxylate acts as a monodentate ligand. None-

theless, the coordination polymer again consists of a chain of

spiro-fused rings (Fig. 11), in this case running parallel to the

[100] direction. In addition to the ®ve ligating O atoms from

the two anions, the Ba cation is also coordinated by four of the

Figure 22
Stereoview of part of the crystal structure of (3) showing the formation of
a hydrogen-bonded molecular ladder along [102]. For the sake of clarity,
the water molecules not involved in the ladder depicted and the H atoms
bonded to the C atoms are omitted.

Figure 21
Part of the crystal structure of (3) showing the formation of a hydrogen-
bonded molecular ladder along [001]. For the sake of clarity, the water
molecules, the H atoms bonded to C atoms and the unit-cell box are all
omitted. The O and N atoms marked with an asterisk (*), a hash (#) or a
dollar sign ($) are at the symmetry positions (2ÿ x; y; 1ÿ z), (x; y; 1� z)
and (x; y;ÿ1� z), respectively, and the Ca1& atom is at the position (1, 1
+ y, 1

2.

Figure 20
Stereoview of part of the crystal structure of (1) showing the formation of
a chain of spiro-fused rings along [10�1]. For the sake of clarity, the water
molecules not involved in the motif shown and H atoms bonded to C
atoms are omitted.



seven water molecules (those containing O1±O4), so giving

nine-coordination. It may be noted here that the difference

between the two MÐO distances involving the bidentate

carboxylate unit in (5) is less than in either of (3) and (4),

(Table 2).

Compound (6): In (6) (Fig. 6), the Sr cation lies on a twofold

rotation axis in the space group C2/c, chosen as that along (1
2, y,

1
4). The anionic ligand bridges two Sr cations, which are ligated

by amidic O21 of the anion at (x; y; z) and carboxylate O23 of

the anion at (x;ÿ1� y; z). In this manner, a one-dimensional

coordination polymer is generated in which the cations and

anions form a chain of spiro-fused R2
4�14� (Starbuck et al.,

1999) rings (Fig. 12). Four chains of this type run through each

unit cell, along the axes (1
2, y, 1

4), (1
2,ÿy, 3

4), (0, y, 1
4) and (0,ÿy, 3

4).

3.3.3. A two-dimensional coordination polymer, (7). In (7)

(Fig. 7) the cation again lies on the twofold rotation axis along

(1
2, y, 1

4) in C2/c, with a similar set of ligating atoms to those in

(6). However, the carboxylate atoms O23 coordinated to the

reference Ba are those in the anions at (1
2 + x, 1

2 + y, z) and (1
2 ÿ

x, 1
2 + y, 1

2 ÿ z). The amidic O21 atoms in these two anions are

coordinated to cations at (1, 1
2 + y, 1

4) and (0, 1
2 + y, 1

4), respec-

tively. The carboxylate O23 atoms in the anions at (x; y; z) and

(1 ÿ x, y, 1
2 ÿ z) (whose amidic O21 atoms are bonded to the

reference Ba) are coordinated to Ba ions at (0, ÿ1
2 + y, 1

4) and

(1, ÿ1
2 + y, 1

4). In this manner, each anion is coordinated to two

different Ba cations, while each Ba is bonded to four different

anions, thus producing a two-dimensional coordination

polymer. The polymer forms deeply puckered (001) sheets, in

the form of a (4,4) net (Batten & Robson, 1998) built from a

single type of R4
8�28� ring (Fig. 13). Two sheets of this type pass

through each unit cell: in one sheet all of the Ba have z = 1
4 and

in the other all of the Ba have z = 3
4.

3.3.4. A coordination polymer with mixed dimensionality,
(8). The coordination polymer based on the type 1 cation Ca1

in (8) takes the form of a (4,4) net (Batten & Robson, 1998).

The type 1 and type 2 anions (containing N11 etc. and N21 etc.,

respectively) at (x; y; z) are coordinated to Ca1 at (x; y; z) in

monodentate fashion via their carboxylate O atoms O121 and

O221. In the same pair of anions, the nitroso O atoms O15 and

O25 are coordinated respectively to the Ca1 cations at (ÿx, 1
2 +

y, 1 ÿ z) and (1 ÿ x, ÿ1
2 + y, 1 ÿ z), so forming a chain along
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Figure 23
Part of the crystal structure of (5) showing the formation of a hydrogen-
bonded molecular ladder along [010]. For the sake of clarity, the water
molecules and the H atoms bonded to C and O atoms are omitted. The
atoms marked with an asterisk (*) or a hash (#) are at the symmetry
positions (x; 1� y; z) and (x;ÿ1� y; z), respectively.

Figure 25
Stereoview of part of the crystal structure of (6) showing the linking of
the coordination polymer chains into hydrogen-bonded (001) sheets of
R4

4�36� rings. For the sake of clarity, the water molecules and the H atoms
bonded to C atoms are omitted.

Figure 24
Stereoview of part of the crystal structure of (5) showing the formation of
a hydrogen-bonded molecular ladder along [111]. For the sake of clarity,
the water molecules not involved in the ladder depicted and the H atoms
bonded to the C atoms are omitted.
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[1�10]. At the same time, the reference Ca1 cation at (x; y; z) is

also coordinated by nitroso O15 and O25 atoms in the anions

at (ÿx, ÿ1
2 + y, 1 ÿ z) and (1 ÿ x, 1

2 + y, 1 ÿ z), respectively,

thus forming a similar chain along [110], which is related to the

[1�10] chain by the action of the 21 screw axes at z = 0.5. The

combination of [110] and [1�10] chains generates a (001) sheet

built from a single type of R8
4�44� ring (Starbuck et al., 1999),

with the cations forming the nodes of the (4,4) net (Fig. 14).

Just one sheet of this type passes through each unit cell,

occupying the domain 0.28 < z < 0.72, that is to say, somewhat

less than one half of the available volume.

By contrast, the coordination of the type 2 cation Ca2 leads

only to a monomeric coordination complex [Ca(LE)2(H2O)5]

(cf. Fig. 8b): this complex lies in the domain 0.75 < z < 1.10 and

a symmetry-related complex lies in the domain ÿ0.10 < z <

0.25. There is thus no overlap between the monomeric

complexes containing Ca2 and the sheets containing Ca1; the

two coordination types are, however, linked by an extensive

series of hydrogen bonds (see x3.4.6).

3.3.5. A three-dimensional coordination polymer, (9). The

coordination polymer in (9) is three-dimensional and its

construction can most readily be analysed in terms of two

distinct one-dimensional substructures. These involve,

respectively, the cation and one of the anions, and the cation

and three of the water molecules. In the ®rst coordination

polymer motif, nitroso O25 in the type 2 anion (containing

N21, N22 etc.) at (x; y; z) is coordinated to the Ba cation at

(1ÿ y; x;ÿ 1
4� z), while O25 at (1ÿ y; x;ÿ 1

4� z� is in turn

coordinated to the cation at (1ÿ x; 1ÿ y;ÿ 1
2� z): propaga-

tion of this interaction thus generates a C(11) (Starbuck et al.,

1999) helical chain running parallel to the [001] direction and

generated by the 43 screw axis along (1
2,

1
2, z) (Fig. 15). It is

intersting to note that the disordered methionine units lie

within this helical chain. A single chain of this type passes

through each unit cell. Since these amino acid units carry no

hydrogen-bonding functionality, there is effectively no

tethering of these distal ends and the extensive disorder is

probably associated with the terminal ends of these: indeed, it

is quite likely that the methionine units are rather mobile

within the core of the helical polymer.

In the second coordination polymer motif, the water

molecules containing O1, O2 and O3 at (x; y; z) are coordi-

nated to the Ba cation at (2ÿ x; 1ÿ y;ÿ 1
2� z), while the

corresponding water molecules at (2ÿ x; 1ÿ y;ÿ 1
2� z) are

in turn coordinated to the cation at (x; y;ÿ1� z). Hence a

chain of cation and water molecules is generated by the 21

screw axis along (1, 1
2, z) (Fig. 16), with equivalent chains along

(0, 1
2, z), (1

2, 0, z) and (1
2, 1, z). The cations at (x; y; z) and at

(2ÿ x; 1ÿ y;ÿ 1
2� z) lie respectively in the 43 helices along

(1
2,

1
2, z) and (3

2,
1
2, z), so that the combined effect of the 21 helices

is to link together all of the 43 helices into a single continuous

framework.

3.4. Hydrogen bonding

The polarized molecular-electronic structures of the anionic

ligands (x3.2) lead to the development of charge-assisted

hydrogen bonding (Gilli et al., 1994). Extensive hydrogen

bonding is present in all of the structures, and in Table 4 are

listed only those hydrogen bonds which form part of the

Figure 27
Part of the crystal structure of (7) showing the formation by the anionic
ligands of a hydrogen-bonded R2

2�20) ring which links the (001) sheets.
For the sake of clarity, the H atoms bonded to C atoms and the unit-cell
box are omitted. The atoms marked with an asterisk (*) are at the
symmetry position (1

2ÿ x; 1
2ÿ y;ÿz�.

Figure 26
Part of the crystal structure of (6) showing the formation by the anionic
ligands of a hydrogen-bonded R2

2�20� ring which links the (001) bilayers.
For the sake of clarity, the H atoms bonded to C atoms and the unit-cell
box are omitted. The atoms marked with an asterisk (*) are at the
symmetry position (3

2ÿ x; 5
2ÿ y;ÿz).



discussions below: full listings are available in the CIF, which

forms part of the supplementary material.

3.4.1. Compound (1). Although the coordination aggregate

in (1) is ®nite and thus effectively zero-dimensional (Fig. 1),

the extensive hydrogen bonding links these units into a

continuous three-dimensional framework. Each anionic ligand

has two NÐH bonds available for inter-aggregate hydrogen

bonding, while there is a total of 12 OÐH bonds per aggregate

available for this purpose. There are hydrogen-bonded chains

running along the [100], [010], [110] and [10�1] directions,

which combine to build the framework.

Amino N6 in the anion at (x; y; z) is part of the aggregate

centred at (1
2,

1
2,

1
2) and it acts as a hydrogen-bond donor, via

H6A, to amidic O4 at (1� x; y; z), part of the aggregate

centred at (3
2,

1
2,

1
2). Propagation of this hydrogen bond by

inversion and translation then produces a molecular ladder

running parallel to the [100] direction (Fig. 17), in which the

uprights are a pair of antiparallel C(6) chains with 36-

membered rings between the rungs formed from the Ca-amino

acid fragments. The cations and three of the four independent

water molecules give rise to a chain along [010] without any

participation of the anions. Water O2 at (x; y; z) is coordinated

to the cation at (1
2,

1
2,

1
2), which acts as a donor to water O3, also

at (x; y; z), while O3 at (x; y; z) acts as a donor to water O1 at

(x; 1� y; z), which is coordinated to the cation at (1
2,

3
2,

1
2). In

this manner a chain of spiro-fused 12-membered rings is

formed (Fig. 18). The water O1 at (x; y; z) in turn acts as a

hydrogen-bond donor, via H1Y, to the nitroso O5 in the anion

at (x;ÿ1� y;ÿ1� z), which forms part of the aggregate

centred at (1
2,ÿ1

2,ÿ1
2). Propagation of the hydrogen bond leads

to the formation of a chain of spiro-fused rings running

parallel to the [110] direction (Fig. 19). Finally, water O4W at

(x; y; z) acts as a donor to both N5 and O4 in the anion at

(1� x; y;ÿ1� z), a component of the aggregate centred at (3
2,

1
2, ÿ1

2), in an effectively planar three-centre OÐH� � �(N,O)

hydrogen bond, thus forming another chain of spiro-fused

rings, this time running parallel to [10�1] (Fig. 20).

3.4.2. Compound (2). The linking of the coordination-

polymer chains into a three-dimensional framework is exactly

the same as in the isostructural Sr complex (Glidewell et al.,

2002). The patterns of the hydrogen bonds in the two

complexes are identical and their dimensions are almost the

same.

3.4.3. Compounds (3) and (4). Again, it is necessary only to

discuss one member of this isomorphous pair, (3). In this

structure, an extensive series of hydrogen bonds, involving

both the anionic ligands and the water molecules, links the

coordination-polymer chains into a single continuous frame-

work, and we discuss only the minimal set of such interactions

required to demonstrate the three-dimensional nature of the

structure.

The ionic components alone form molecular ladders

running parallel to the [001] direction (Fig. 21): the anion at

(x; y; z) lies in the polymer chain along (1, y, 1
2), and the amino

N6 at (x; y; z) acts as a hydrogen-bond donor, via H6A, to the

amido O4 in the anion at (x; y; 1� z), which forms part of the

polymer chain along (1, y, 3
2). Within the ladder the uprights

are formed by two antiparallel C(6) chains built from NÐ

H� � �O hydrogen bonds, while the rungs consist of the Ca ions

and pairs of threonine side chains. Between the rungs are

puckered 36-membered rings. Propagation of the NÐH� � �O
hydrogen bond via the twofold rotation axes links together the

polymer chains into (100) sheets.

A second molecular ladder, running parallel to the [102]

direction, incorporates the water molecule containing O2. The

Acta Cryst. (2004). B60, 46±64 M. Luz Godino Salido et al. � Hydrated metal(II) complexes 61

research papers

Figure 28
Part of the crystal structure of (8) showing the formation of a hydrogen-
bonded molecular ladder along [100] formed by Ca2 and its coordinated
anions. For the sake of clarity, H atoms bonded to C atoms are omitted.
The atoms marked with an asterisk (*) or a hash (#) are at the symmetry
positions (ÿ1� x; y; z) and (1� x; y; z), respectively.

Figure 29
Stereoview of part of the crystal structure of (8) showing the linking of
the [100] ladders into a (001) sheet by water molecules. For the sake of
clarity, H atoms bonded to C atoms are omitted and only the major
components of the disordered fragments are shown.
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O21 atom in the anion at (x; y; z) lies in the polymer chain

along (1, y, 1
2), and it acts as a donor to water O2, also at

(x; y; z): this water molecule acts as a hydrogen-bond donor,

via H21B, to nitroso O5 in the anion at (3
2 ÿ x, ÿ1

2 + y, ÿz),

which forms part of the polymer chain along (1
2, y, ÿ1

2.

Propagation of this OÐH� � �O hydrogen bond, by the twofold

rotation axes, generates the [102] ladder (Fig. 22) which in turn

links the polymer chain into a sheet parallel to (201). The

combination of the (100) and (201) sheets is suf®cient to

generate the three-dimensional framework.

3.4.4. Compound (5). Although all the components of (5)

lie in general positions with two independent anions and

although the space group is P1, compared with C2 in (3) and

(4), nonetheless, a number of the hydrogen-bonding motifs in

(5) are somewhat similar to those in (3) and (4). The amino

N16 and N26 in the anions at (x; y; z) act as hydrogen-bond

donors, via H16A and H26A, respectively, to amidic O14 at

(x; 1� y; z) and O24 at (x;ÿ1� y; z), thus generating a

molecular ladder running parallel to the [010] direction (Fig.

23). This ladder is very similar in construction to the [001]

ladder in (3) and (4) (Fig. 21) and it links the [100] polymer

chains into a (001) sheet.

The very extensive array of hydrogen bonds, mostly of the

OÐH� � �O type, involving the water molecules (Table 4),

generates further chain motifs, running parallel to the [100],

[110] and [111] directions, which together with the [010] ladder

link the polymer chains into a single, tightly bound three-

dimensional framework. Thus, for example, coordinated water

O4 at (x; y; z), acts as a donor, via H4B, to both O14 and N15

in the type 1 anion at (1� x; 1� y; 1� z) in a planar three-

centre OÐH� � �(N,O) hydrogen bond, while O6 at (x; y; z)

likewise acts as a donor, via H6B, to both O24 and N25 in the

type 2 anion at (ÿ1� x;ÿ1� y;ÿ1� z), thus forming a

ladder running parallel to the [111] direction (Fig. 24).

3.4.5. Compound (6). The one-dimensional coordination-

polymer chains along [010] in (6) are linked by hydrogen

bonds into a three-dimensional framework of some

complexity. The analysis and the description of the formation

of this framework are both markedly simpli®ed by the

observation that it can be described in terms of the ionic

components only. Although the hydrogen bonds formed by

the water molecules undoubtedly reinforce the framework,

their presence is not essential to demonstrate its three-

dimensional nature.

The amino N21 atom in the anion at (x; y; z) acts as a

hydrogen-bond donor to carboxylate O23 in the anion at

(1
2� x;ÿ 1

2� y; z), thus producing a C(8) chain running

parallel to the [1�10] direction and generated by the C-centring

operation of the space group C2/c. Similarly, amino N6 in the

anion at (x; y; z) acts as a hydrogen-bond donor, via H6A, to

amido O4 in the anion at (ÿ 1
2� x;ÿ 1

2� y; z), thus producing

a C(6) chain along [110], again generated by the C-centring

operation. The combination of these two chain motifs

produces a (001) sheet in the form of a (4,4) net built from a

single type of R4
4�36� ring (Fig. 25). There are four such sheets

passing through each unit and they are linked in pairs by the

cations into two bilayers, one lying in the domain ÿ0.09 < z <

0.59, where the hydrogen-bonded sheets are linked by the

cations at z = 0.25, and the other in the domain 0.41 < z < 1.09,

where the sheets are linked by the cations at z = 0.75.

The bilayers are linked together by a third hydrogen bond,

again involving only the anion. The amido N22 atom in the

anion at (x; y; z), which lies in the bilayer generated by the

twofold axes at z = 1
4, acts as a hydrogen-bond donor to the

nitroso N5 in the anion at (3
2ÿ x; 5

2ÿ y;ÿz), which lies in the

bilayer generated by the twofold axes at z = ÿ0.25. The

resulting R2
2�20� ring (Fig. 26), when propagated by the space-

group operators, serves to link each bilayer to its two

immediate neighbours and hence to link all the bilayers into a

single continuum. The two pyrimidine rings in this centro-

symmetric motif are parallel with an interplanar spacing of

3.320 (2) AÊ and a centroid separation of 3.730 (2) AÊ , corre-

sponding to a centroid offset of 1.700 (2) AÊ , indicative of a

weak and possibly adventitious aromatic �� � �� stacking

interaction.

3.4.6. Compound (7). As in (6), there is an extensive series

of hydrogen bonds in (7). However the linking of the (001)

coordination-polymer sheets is most simply demonstrated in

terms of a single NÐH� � �N hydrogen bond. The amino N22 in

the anion at (x; y; z) lies in the reference sheet having a Ba

cation at z = 0.25: this N22 acts as a hydrogen-bond donor to

Figure 30
Part of the crystal structure of (9) showing the formation of a hydrogen-
bonded molecular ladder along [001] formed by the cation and the anions
only. For the sake of clarity, H atoms bonded to C atoms are omitted and
only the major components of the disordered fragments are shown. The
atoms marked with an asterisk (*) or a hash (#) are at the symmetry
positions (x; y; 1� z) and (x; y;ÿ1� z), respectively.



nitroso N5 in the anion at (1
2ÿ x; 1

2ÿ y;ÿz), which lies in the

polymer sheet having Ba cations at z =ÿ1
4. Propagation by the

space group of the resulting R2
2�20� motif (Fig. 27) links each

polymer sheet to the two neighbouring sheets and hence all

the sheets are linked into a single framework. As in (6), this

R2
2�20� ring appears to be weakly reinforced by an aromatic

�� � �� stacking interaction: the interplanar separation of the

two pyrimidine rings is 3.316 (2) AÊ , with a centroid separation

of 3.794 (2) AÊ and a centroid offset of 1.843 (2) AÊ . It is striking

that, despite the very different coordination-polymer

substructures in (6) and (7), the same R2
2�20�motif is present in

the hydrogen bonding of both structures.

3.4.7. Compound (8). The asymmetric unit of (8) contains

12 independent water molecules and four independent anions;

the hydrogen bonding is therefore very extensive and of some

considerable complexity. However, it is possible to demon-

strate the three-dimensional framework structure of (8), into

which are linked both the coordination monomer based upon

Ca2 and the coordination polymer based upon Ca1, in terms

of no more than ®ve intermolecular hydrogen bonds out of the

30 or so available. The framework formation is conveniently

analysed and described in terms ®rstly of the formation of

molecular ladders generated by the Ca2 monomer and then in

terms of the role of these ladders in linking the Ca1 and Ca2

moieties together.

In the anions of types 3 and 4, coordinated to Ca2 at

(x; y; z), the amino N36 and N46 atoms act as hydrogen-bond

donors, via H36A and H46A, respectively, to O35 at

(ÿ1� x; y; z) and to O44 at (1� x; y; z), thus generating by

translation a ladder running parallel to the [100] direction.

(Fig. 28). It may be noted here that within the coordination-

polymer sheet based upon Ca1 it is possible to identify a

molecular ladder, entirely analogous to that formed by Ca2

and its coordinated anions. In the [100] ladder (Fig. 28) the

Ca2 cations lie along the line (x, 0.87, 0.82) and in ladders

related to it by the 21 screw axis the Ca2 cations lie along the

lines (x, 0.37, 1.18), (x, 1.37, 1.18) and so on. The water

molecule containing O7 links all the ladders whose Ca2

cations lie in the domain 0.82 < z < 1.18 into a second type of

(001) sheet. The water molecule containing O7 at (x; y; z) is

directly coordinated to Ca2 at (x; y; z) and it acts as a

hydrogen bond donor, via H7A and H7B, respectively to O45

in the type 4 anion at (2ÿ x; 1
2� y; 2ÿ z) and to O35 in the

type 3 amino at (2ÿ x;ÿ 1
2� y; 2ÿ z): these two anions lie in

the ladders along (x, 1.37, 1.18) and (x, 0.37, 1.18) and

propagation of these hydrogen bonds by translation generates

a (001) sheet whose cations and anions occupy the domain

0.75 < z < 1.25 (Fig. 29). In this manner a millefeuille structure

is formed with alternating layers based upon Ca1 and Ca2

cations and their ligands.

One further hydrogen bond suf®ces to link the various

layers into a continuum. The water molecule containing O1 is

directly coordinated to Ca1 and this water at (x; y; z) lies in

the 0.28 < z < 0.72 layer: it acts as a hydrogen-bond donor, via

H1A, to carboxyl O422 in the type 4 amino at (ÿ1� x; y; z),

which itself lies in the 0.75 < z < 1.25 layer. Propagation of this

hydrogen bond by the twofold screw axes serves to link each

layer to its two neighbouring layers, thus forming a single

framework.

3.4.8. Compound (9). Although the coordination polymer

in (9) is three-dimensional, the resulting framework gains

some reinforcement from the formation of a hydrogen-

bonded molecular ladder. The amino N16 and N26 atoms in

the two anions at (x; y; z) act as hydrogen-bond donors, via

H16A and H26A, respectively, to O14 and O24 in the corre-

sponding anions at (x; y; 1� z), thus generating by translation

along [001] the same type of molecular ladder (Fig. 30), as

observed in (1), (3). (4), (5) and (8).

4. Concluding comments

The title anions readily form hydrated neutral complexes with

a range of M2+ cations, particularly Ca2+, Sr2+ and Ba2+, and

the products exhibit a wide range of structural motifs, both in

terms of the metal±ligand coordination and in terms of the

hydrogen bonding. The dimensions of the nitrosopyrimidine

rings all provide evidence for strong polarization of the elec-

tronic structures, as found earlier (Low et al., 2000) for a series

of related dihydropyrimidinones. Although the intramolecular

distances are unusual in comparison with those in simple

nitroso-arenes and in analogous pyrimidines carrying no

nitroso substituent, a simple polarization model is consistent

with all the present observations. The complexes of enantio-

pure chiral ligands necessarily crystallize in non-centrosym-

metric space groups, ful®lling one of the requirements for non-

linear optical behaviour (Masse et al., 1999; Muthuraman et al.,

1999).
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